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Introduction

Objectives

Using a stochastic approach for prognostic in order to
compare with the exciting non-stochastic methods applied
on the 2008 Prognostic Health Management data.

Construction of a degradation indicator from the sensors
measurements (2008 Prognostic Health Management
(PHM) Challenge data).

Using a stochastic process to model the deterioration of
components (Remaining Useful Life estimation).



Experimental data

Unit Cycle OP1 OP2 OP3 SM1 SM2 … SM21

1

1

…

T
1

...

218

1

…

T
218

3 Operational variables Measurements of 21 sensors

Two sub-data sets: the training data set and the testing
data set.

The training data set is used to build the prediction model

The testing data set is used to estimate the RUL for each
testing unit.



Experimental data
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Degradation indicator can not be directly deduced from
the 21 sensor paths

All measurements are divided into 6 clusters
corresponding to 6 operational modes

Selection of 7 sensors



Degradation indicator construction

Analyse of a failure times

Select the measurements of 7 sensors only at the failure
time

Group the failure measurements according to their mode
(6 groups)

Identification of a failure space and a failure place for each mode

Create a projection space of dimension 2 with PCA
(called failure space)

Calculate the barycenter of the projected failure
measurements in this space to create a failure place.



Principal Component Analysis

Results

6 plans of PCA P1, P2, ..., P6, one for each mode.

6 failure places L1, L2, ..., L6, one for each mode.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
PC1 60.85 72.64 61.45 54.41 58.95 79.65
PC2 38.04 26.75 37.85 44.55 40.07 19.11
PC3 0.66 0.28 0.34 0.56 0.41 0.77

Table: Contribution of principal components for each mode



Degradation indicator

Nk number of units in mode k
P̄k = (ā, b̄) the barycenter of the failure space Pk,
k = 1, ..., 6
P k
i = (ai, bi), i = 1, ..., Nk is the ith failure place in the

projection space Pk
P k
ij = (aij, bij) is the measure of the 7 selected sensors at

time j for component i in the projection space Pk
The dispersion of the failure places in mode k at time j (noted
k(j)) is defined by:

Disperk(j) =

√√√√ 1

Nk(j) − 1

Nk(j)∑
i=1

((ai − ā)2 + (bi − b̄)2)

D
k(j)
ij =

√
(a
k(j)
ij − ā)2 + (b

k(j)
ij − b̄)2

Disperk(j)



Degradation indicator
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Failure space in mode k

P k
i,j (Projection at the cycle j of unit i on the failure space in mode k)

Barycenter of the
failure projections P̄k

Dk
i,j =

distance(P k
i,j;P̄k)

Disperk



Degradation indicator

⇒ One component
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Degradation indicator

⇒ All the components
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Degradation model - Definition

Note:
D
k(j)
i,j = degradation indicator of unit i at cycle j.

Y(i) = (D
k(1)
i,1 , ..., D

k(ni)
i,ni

) : the observation vector for
unit i.
X(i) = (X

k(1)
i,1 , ..., X

k(ni)
i,ni

) : the non-observable actual
random states of unit i.

Our deterioration model:

D
k(j)
i,j = X

k(j)
i,j + ε

k(j)
i,j

Y (i) = X(i) + ε(i)

where :
ε
k(j)
i,j , j = 1, ..., ni : the independent gaussian random

variables with standard deviation σ
(i)
j and mean equals

to zero for unit i.
Non-homogeneous Gamma process for X

k(j)
i,j



Degradation model

Definition of non-homogeneous Gamma process

The initial state X0 = 0.

(Xj)j≥0 is supposed to be monotone, increasing.

The increments Xj −Xj−1, j = 1, 2, ..., n are
independent and have the Gamma density:

fv(tj)−v(tj−1),β(x) =
βv(tj)−v(tj−1)e−βx

Γ(v(tj)− v(tj−1))
xv(tj)−v(tj−1)−11(0,∞)(x)

Γ(u) =
∫∞
z=0 z

u−1e−zdz : Gamma function for u > 0.
1A(x) = 1 for x ∈ A, 1A(x) = 0 for x /∈ A.
Shape function v(t) = αtb and scale parameter β.

where: Γ(v) =
∫∞
z=0

zv−1e−zdz is the gamma function, .

⇒ 4 parameters to be estimated: α, β, b, σ.
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Remaining Useful Lifetime estimation

Remaining Useful Lifetime (RUL) estimation is based on
the failure probability at the next inspection given the n
observations Y1, ..., Yn.

The distribution function of RUL(tn) figured out the
observations is defined as follows:

FRUL(tn)(h) = P (Xtn+h > L|Xn > L, Y1, ..., Yn)

=

∫ ∫
F̄α((tn+h)b−tbn),β(l − xn).fL(l).µXn/Y1,...,Yndldxn

F̄α((tn+h)b−tbn),β : the reliability function of Gamma

process with shape function α((tn + h)b − tbn) and scale
parameter β.
µXn/Y1,...,Yn : the conditional density of Xn.
fL(l) : the density function of the failure threshold.



Joint distribution of system state

For estimating the RUL, the joint conditional density of
X figured out the observation vector Y is calculated as
follows:

µX/Y(x1, ..., xn)=K1e
−βxn

n∏
j=1

(xj − xj−1)α(t
b
j−tbj−1)−1e(−

g2(xj,Yj)

2σ2
)|g′(xj , Yj)|

where g′(., y) = ∂g(.,y)
∂y

and K1 is the coefficient defined as
follows:

1

K1

=

∫
...

∫
e−βxn

n∏
j=1

(xj−xj−1)α(t
b
j−tbj−1)−1e−

g2(xj,Yj)

2σ2 |g′(xj, Yj)|dx1...dxn

It’s difficult to calculate the coefficient K1 ⇒ MCMC
(Gibbs) algorithm.



Gibbs algorithm

For j = 1,

µX/Y(x1/x2, ..., xn) = K2,1x
α(tb1)−1
1 (xj − xj−1)α(t

b
j−tbj−1)−1

e−
g2(X1,Y1)

2σ2 |g′(x1, Y1)|1(0<x1<x2)
For 2 ≤ j ≤ n− 1,

µX/Y(xj/x1, ..., xj−1, xj+1, ..., xn) = K2,j(xj−xj−1)α(t
b
j−tbj−1)−1

(xj+1−xj)α(t
b
j+1−tbj)−1e(−

g2(xj,Yj)

2σ2
)|g′(xj , Yj)|1(xj−1<xj<xj+1)

For j = n,

µX/Y(xn/x1, ..., xn−1) = K2,ne
−βxn(xn−xn−1)α(t

b
n−tbn−1)−1

e−
g2(xn,Yn)

2σ2 |g′(xn, Yn)|1(xn−1<xn)

where K2,j are tractable constants dependent on
x1, ..., xj−1, xj+1, ..., xn and y1, ..., yn



Parameters estimation

Parameters of model are estimated based on the outputs
of Gibbs algorithm and by using the Stochastic EM
(SEM) method.

The observations set Y(i) = (Y
k(1)
i,j , ..., Y

k(ni)
i,ni

),
i = 1, ..., 218 with component independently observed at
inspection times 0 < t1 < ... < tni .

Maximizing the likelihood:

L(α, b, β, σ) =

218∑
i=1

ni∑
j=1

[(α((tj)
b−(tj−1)

b)−1)ln(X
k(j)
i,j −X

k(j−1)
i,j−1 )

−β(X
k(j)
i,j −X

k(j−1)
i,j−1 )−

g2(X
k(j)
i,j , Y

k(j)
i,j )

2σ2
+ln(|g′(Xk(j)

i,j , Y
k(j
i,j )|)

−ln(σ
√

2π)+α((tj)
b−(tj−1)

b) ln(β)−ln(Γ(α((tj)
b−(tj−1)

b)))]



RUL estimation

The conditional distribution FRUL(tn)(h):

FRUL(tn)(h) = P (Xtn+h > L|Xn > L, Y1, ..., Yn)

=

∫ ∫
F̄α((tn+h)b−tbn),β(l − xn).fL(l).µXn/Y1,...,Yndldxn

can be estimated by Gibbs algorithm as follows:

F̂RUL(tn)(h) =
1

Q

Q0+Q∑
q=Q0+1

∫
F̄
α̂((tn+h)b̂−tb̂n),β̂

(l−zn(q)).fL(l)dl

Q0 : the number of sequences to get the convergence
state.
Q : the number of sequences to give sufficient precision
to the empirical distribution of interest.
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Performance assessment of the model

Applying the stochastic degradation model to all 218
units of the testing data set, we obtained an estimated
RULs set RULi

′

estimated,for i′ = 1, ..., 218.

Penalty function criterion : provided by 2008 PHM
Challenge, the penalty score for each testing unit is given
by the following formula:

Si′ =

{
e−di′/13 − 1, di′ ≤ 0

edi′/10 − 1, di′ > 0
i′ = 1, ..., 218

where di′ = RULi
′

estimated −RULi
′

actual and the total score
S =

∑218
i=1 Si′

Root mean squared error : RMSE =
√∑218

i′=1(di′)
2



Performance assessment of the model

Lifetime distribution model (Weibull distribution on the
failure times) : S = 9870

Total score of the different models on our degradation

indicator D
k(j)
i,j :

Similarity-based prognostic approach proposed by Wang
in the 2008 PHM conference : S = 6690
Gamma +Noise model : S = 4197 and RMSE = 420

The best results in the 2008 PHM Challenge:

Similarity-based prognostic model of Wang : S = 5636
Non-probabilistic models based on the neural networks
of Peel (2008) and Heimes (2008):
RMSE=519.8 and RMSE=984.



RUL utility: RUL based maintenance

The system is inspected periodically at inspection times
T1, T2, . . . where Tk = kT with k ∈ N and T ∈ R is the
inspection interval.
Let be Q, (0 < Q < 1), a fixed percentile of the RUL
distribution function, at each inspection time Tk :

If XkT < L and P (RUL(Tk) < T ) > Q, the system is
preventively replaced with a cost Cp.

If XkT < L and P (RUL(kT ) < T ) < Q, the decision is
postponed until the next inspection.

If XkT ≥ L, a corrective replacement is carried out with a
cost Cc.
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Figure: RUL based maintenance policy



RUL based maintenance

C∞ = lim
t→∞

C(t)

t
,

C(t) is the cumulated maintenance cost at time t

C(t) = CiNi(t) + CpNp(t) + CcNc(t) + Cddd(t),

Np(t) the number of preventive replacements before t, Nc(t)
the number of corrective replacements before t, dd(t) the
cumulative unavailability duration of the system before t and
Ni(t) the number of inspections before t. Note that
Ni(t) =

[
t
T

]
where [x] denotes the integer part of the real

number x.



RUL based maintenance

(T,Q) policy
X= 0.19
Y= 1.6
Level= 9.9398

Q

 

 

(T ,Q) policy and maintenance cost
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Figure: Iso-level curves and mean cost per time unit of (T,Q)
policy



Thank you for your attention
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