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Introduction

Objectives

@ Using a stochastic approach for prognostic in order to
compare with the exciting non-stochastic methods applied
on the 2008 Prognostic Health Management data.

@ Construction of a degradation indicator from the sensors
measurements (2008 Prognostic Health Management
(PHM) Challenge data).

@ Using a stochastic process to model the deterioration of
components (Remaining Useful Life estimation).



Experimental data
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@ Two sub-data sets: the training data set and the testing
data set.

@ The training data set is used to build the prediction model

@ The testing data set is used to estimate the RUL for each
testing unit.



Experimental data

@ Degradation indicator can not be directly deduced from
the 21 sensor paths

@ All measurements are divided into 6 clusters
corresponding to 6 operational modes

@ Selection of 7 sensors



Degradation indicator construction

Analyse of a failure times

@ Select the measurements of 7 sensors only at the failure
time
@ Group the failure measurements according to their mode
(6 groups)
Identification of a failure space and a failure place for each mode

@ Create a projection space of dimension 2 with PCA
(called failure space)

o Calculate the barycenter of the projected failure
measurements in this space to create a failure place.



Principal Component Analysis

Results

@ 6 plans of PCA P, P, ..., Ps, one for each mode.
e 6 failure places L1, L2, ..., L6, one for each mode.

Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6
PC1 | 60.85 72.64 61.45 54.41 58.95 79.65
PC2 | 38.04 26.75 37.85 44 55 40.07 19.11
PC3 0.66 0.28 0.34 0.56 0.41 0.77

Table: Contribution of principal components for each mode




Degradation indicator

@ N number of units in mode &

o P, = (a,b) the barycenter of the failure space P,
k=1,..,6

o PF=(a;b;),i=1,.., Ny is the i'" failure place in the
projection space Py

° P@";' = (ay;, b;j) is the measure of the 7 selected sensors at
time j for component 7 in the projection space P

The dispersion of the failure places in mode k at time j (noted

k(7)) is defined by:
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Degradation indicator

Projections of failure on the 2-D space of PCs in mode k (Fy)
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Degradation indicator

= One component
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Degradation indicator

= All the components

Degradation indicators of all units

Degradation indicator

@ Non-linear and decreasing
@ Significant dispersion in the beginning
@ At the failure times, degradation tends to zero



Degradation model - Definition

e Note:
° ny) = degradation indicator of unit i at cycle j.
o Y — (Di(ll), ,D%Zl)) . the observation vector for
unit i.
o X0 — (Xﬁl), ,ngfl)) : the non-observable actual

random states of unit i.

@ Our deterioration model:
k(5) Xk(j) k(4)
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where :

k(j)
® Cij o

variables with standard deviation O'](-Z) and mean equals
to zero for unit i.

(i
e Non-homogeneous Gamma process for X; ](.j)

j=1,...,n; : the independent gaussian random



Degradation model

Definition of non-homogeneous Gamma process
@ The initial state Xy = 0.
® (X,)j>0 is supposed to be monotone, increasing.

@ Theincrements X, — X, 1, 7 =1,2,...,n are
independent and have the Gamma density:

Bt —v(tj-1) g=b
[(v(t;) —v(tj-1))

fott)—o(t;1).5(T) = ) ) ()

= [>°, 2" te"*dz : Gamma function for u > 0.
o Iy(x)=1forxz e A 1a(x)=0forx ¢ A.
e Shape function v(t) = at® and scale parameter 3.

where: I'(v) = [, 2" ‘e *dz is the gamma function, .

= 4 parameters to be estimated: «, 3,b, 0.
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Remaining Useful Lifetime estimation

@ Remaining Useful Lifetime (RUL) estimation is based on
the failure probability at the next inspection given the n
observations Y7, ..., Y,,.

@ The distribution function of RUL(t,) figured out the
observations is defined as follows:

Frurw,(h) = P(X¢,4n > LI X, > LY1,....Y,)

= //Fa((tn+h)btg),g(l—$n)-fL(l)-MXn/Yl,...,Yndldﬂfn

© Fo((t,+hypr—t) g : the reliability function of Gamma
process with shape function a((t, + h)* —t%) and scale
parameter [3.

® [X,/V1,..Y, : the conditional density of X;,.

o fr(I) : the density function of the failure threshold.



Joint distribution of system state

@ For estimating the RUL, the joint conditional density of
X figured out the observation vector Y is calculated as

follows:
n g (z
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j=1
where g/(.,y) = %f) and K is the coefficient defined as

follows:
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@ It's difficult to calculate the coefficient K1 = MCMC
(Gibbs) algorithm.



Gibbs algorithm

@ Forj=1,
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Parameters estimation

@ Parameters of model are estimated based on the outputs
of Gibbs algorithm and by using the Stochastic EM
(SEM) method.

@ The observations set Y = (ij(l), s sz,in))

1 =1,...,218 with component independently observed at
inspection times 0 < ?; < ... <{t,,.

@ Maximizing the likelihood:
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@ The conditional distribution Fryre,(h):
Frur(t,) (h) = P(Xy,+n > L|X,, > L, Y1,....Y,,)
~ [ [ Fatwp-tyt = 5510 1, v i

can be estimated by Gibbs algorithm as follows:

Qo+Q

Frosen® =3 3 [ Faenioity al-n(@) Sl

q Qo+1

e (o : the number of sequences to get the convergence
state.

e ( : the number of sequences to give sufficient precision
to the empirical distribution of interest.



Dégradation
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Performance assessment of the model

@ Applying the stochastic degradation model to all 218
units of the testing data set, we obtained an estimated
RULs set RUL" fori’ =1,...,218.

estimated’
@ Penalty function criterion : provided by 2008 PHM
Challenge, the penalty score for each testing unit is given
by the following formula:

—d; /13 _ 1 ds <0
g, =4 € =T 218
et /10 _ 1, dy>0
where dy = RULY,, . — RUL' , . and the total score

218
S = Zi:l Sy
o Root mean squared error : RMSE = /325 (dy)?

=



Performance assessment of the model

@ Lifetime distribution model (Weibull distribution on the
failure times) : S = 9870
@ Total score of the different models on our degradation
indicator Digj):
e Similarity-based prognostic approach proposed by Wang
in the 2008 PHM conference : S = 6690
e Gamma +Noise model : S = 4197 and RMSE = 420
@ The best results in the 2008 PHM Challenge:

e Similarity-based prognostic model of Wang : S = 5636
o Non-probabilistic models based on the neural networks
of Peel (2008) and Heimes (2008):
RMSE=519.8 and RMSE=984.



RUL utility: RUL based maintenance

The system is inspected periodically at inspection times
11,15, ... where T}, = KT with kK € Nand T" € R is the
inspection interval.

Let be @, (0 < @ < 1), a fixed percentile of the RUL
distribution function, at each inspection time 7} :

o If Xyr < L and P(RUL(T) < T) > @, the system is
preventively replaced with a cost C,.

o If Xyr < L and P(RUL(KT) < T) < @, the decision is
postponed until the next inspection.

e If X7 > L, a corrective replacement is carried out with a
cost C..
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RUL based maintenance

C* = lim %,
t—0o0

C(t) is the cumulated maintenance cost at time ¢
C(t) = C;N;i(t) + CpNy(t) + CeN.(t) + Cada(t),

N,(t) the number of preventive replacements before ¢, N.(t)
the number of corrective replacements before ¢, dy(t) the
cumulative unavailability duration of the system before ¢ and

N;(t) the number of inspections before t. Note that
N;(t) = [L£] where [z] denotes the integer part of the real

number z.



RUL based maintenance

(T,Q) policy and maintenance cost
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Figure: Iso-level curves and mean cost per time unit of (7, Q)
policy



Thank you for your attention
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